Advanced Bash-Scripting Guide

An in-depth exploration of the art of shell scripting

Mendel Cooper

<thegrendel .abs@gmail.com>
10
10 Mar 2014

Revision History

Revision 6.5 05 Apr 2012 Revised by: mc
"TUNGSTENBERRY release

Revision 6.6 27 Nov 2012 Revised by: mc
"YTTERBIUMBERRY' release

Revision 10 10 Mar 2014 Revised by: mc

'PUBLICDOMAIN' release

This tutorial assumes no previous knowledge of scripting or programming, yet progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self-study, and as a reference and source of knowledge on shell
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.

This document is herewith granted to the Public Domain. No copyright!

Dedication

For Anita, the source of all the magic

mailto:thegrendel.abs@gmail.com

Advanced Bash-Scripting Guide

Table of Contents

Chapter 1. Shell Programming!

hapter 2. Starting Off With a Sha-Ban

Part 2. Basics

Chapter 3. Special Characters

30

Chapter 4. Introduction to Variables and Parameters

4.1. Variable SUDSHLULION.uueeiieeeieeteeeeeeeeeeeeeeeeeererereeeeeeeeeeseseeeeeees

Chapter 5. Quoting

... 30
... 33
... 34
... 35

5.1. Quoting Variables.......ceeoueeierieiieiierie ettt
5.2, BSCAPIME .ttt ettt sttt sttt sbe e bt e bt e b e bt e naeas

51

Chapter 6. Exit and Exit Status,
Chapter 7. Tests

54

T, TSt COMSIITICES . ..vvuuuuueeeeeieeeeiitiee e et e e ettt e e e e e e ettt e e e e e e eeessaaaanaans

Chapter 8. Operations and Related Topics

... 54
... 62
... 65
... 70
... 71

72

8. 1. OPEIALOIS . uveeeuvreetreeiteeniteeeteesbeeebee ettt enbaeesabeesabeesabeesbeeebeeenareesareesares
8.2. NUMETICAl CONSLANLS ..evvviviiiiiiiieieieieeeeeeeeee et ee et eeereeeseeeeseeeeeesnes

8.3. The Double-Parentheses CONSIIUCE..........ccoveviiiieiiiiiieieeeeeeeeeeeeeeeeeeeeans
8.4. Operator PreCedenCe. .. .covrerureeriiiiiieeiieeniieesiee ettt

Part 3. Bevond the Basics.

... 72
... 78
... 80
... 81

84

Chapter 9. Another Look at Variables

9.1. Internal VariableS.....ccuvvviiiiiiiiieeeeie e
9.2. Typing variables: declare Or tyPESEL........ceerveerueeeerrieerieeieeieeieeeeeiens

9.2.1. Another use for deClare...........ooovuvvveeeiiiiiiiieiiieeeeeeeeee e
9.3. SRANDOM: generate random inteZeL.......oververeererrerrereeeereerereereeeerenes

Chapter 10. Manipulating Variables

10.1. Manipulating STNGSccoeerreerueerieerieenieenieenieesieeniee st et e sieesbe e e e naeas

10.1.1. Manipulating strings using awk..........cecoeereereeneeneeneeneeneeneenn
10.1.2. Further REfEreNCEoooveeeeeeeeeeeeeeeeeeeeeeee e

10.2. Parameter SUDSUEULION. ...vvvvvereeiiiiiiiieeeeeeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeaes

Advanced Bash-Scripting Guide

Table of Contents

Chapter 11. Loops and Branches 138
L L L 00D ettt ettt ettt ettt ettt ettt e sa e st e sa e et e bt e bt e bt e bt e e eab e e e b et e bt e e b et e baeenabeesabeesabeean 138
11.2. INESIEA LLOODS: c-veeuveeuteenteeieenteeteerttet e e bt esteesbe e bt e bt e bt esbeesbeesbee bt enbtesbeesbeesbeesbeesbtesbeesbeesaeesaeesaeenns 152
11.3. 100D COMEIOL. ..ttt ettt ettt ettt b e bt e s bt e bt e bt e bt e s bt e sbeesbeesbeesbtesbeesbeesaeesaeesaeenas 153
11.4. Testing and Branching.......co.eeoueeruiiitieiieiieee ettt sttt st st st 156
Chapter 12. Command Substitution 165
Chapter 13. Arithmetic Expansion 171
Chapter 14. Recess Time, 172
Part 4. Commands 173
Chapter 15. Internal Commands and Builtins 181
15.1. JOb Control COMIMANGS.uvvvveeiiiiiiiiiiiieieeeee et e e e e e e e e e e e e e e e e e s ee s sasasaasasssssasesessseesenes 210
Chapter 16. External Filters, Programs and Commands 215
16.1. BASIC COMIMANUS. .. .vvvveeeieieeeeieeeseeesesesesesesasssssssssssessssnsssssssssssessssesanes 215
16.2. ComPIeX COMMANGAS ... ceveerteetietietterteerteest et te bt et testeesteesbeesbeesbeesbtesbeesbeesbeesstesbeesbeesaeesaeesneenas 221
16.3. Time / Date COMIMANGS.....uvvveeeeiiiiiiiiiiiieeeeeeeeee et ee e e e e e e e e e e e e e e e e e e eeseesssssssssasassasasssssssssesssseseees 231
16.4. Text Processing COMMANAS cooveertierteenientieniieriierttentee st estee st eesttesbeesteesbeesbeesbtesbeesbeesaeesaeesaeenas 235
16.5. File and Archiving COMMANGS. ... ccoveerteerteeriientientientientte st ettt tesite st et e st et e bt e sbeesbeesaeesaeesaeeeas 258
16.6. Communications COMMEANASceviiiiiiiiieiieeeeeieeee ettt e et e e e e e e e e e e e e e e s sasasaaeasssssssesesaesesenes 276
16.7. Terminal Control COMMANGS.covvtiiieiiiieeieeieeeeieee et et e e e e e e e ee s e e e eaaeaaasasaaesesaeeeseees 291
16.8. Math COMIMIANGASuvvveeeeeeeeeeeeieeieieeeee ettt et eeeee et ettt e ettt eeeeeeseeeetstesesesesssessssssssssssasssssssssssssssssssssesenes 292
16.9. Miscellaneous COMMANGS.......vvvviiiiiiiiiieieieeeeeeeeee et e e e e e e e e e e e e e e eeeeesee s sssasasessasssssssssesseseneees 303
Chapter 17. System and Administrative Commands 318
17.1. Analyzing 8 SYSIEM SCIIPL. . eeveertiertiertientierteesteert et te et e sttt et te st e sbeesbeesbeesbeesbeesbeesaeesaeesaeenas 349
Part 5. Advanced Topics 351
Chapter 18. Regular Expressions. 353
18.1. A Brief Introduction to Regular EXPreSSiOnS.......cereereereerienienieniieniesitenitesitesite e sieesiee e 353
18.2. GIODDIME. e euveeuteentieiiett ettt ettt ettt et e bt e bt e bt e bt e sb e e s bt e s bt e bt e sbeesbeesbeesbeesbeesbtesbeesbeesaeesaeeeaeenas 357
Chapter 19. Here Documents 359
1.1, HET® STIIMES. .o euveeuteetieteeteeete et et et et e st e et e bt e bt et e e st e e sbeesb e e s bt e bt e sbeesbeesbeesbeenbteabeesbeesaeesaeesaeenas 369
Chapter 20. I/0 Redirection 373
20. 1. USIIZ EXEC . uveeuverureruteauteesterttesiteettesttesutessteshtesutesuteeueesbeeabeeabtesbeesbeeabeeabee bt e bt enbeesbeenbeenbeebeabeensean 376
20.2. Redirecting Code BIOCKS.ciutiiiiiiiiiei ettt ettt ettt be e bbb as 379
20.3. ADDICATIOMS v veeuteeiteeiteette et te et et ettt e st e e st eshteshteeutesbtesbeesbeesbeesheesbeeebee bt e bt e bt e sbeesbee bt ebeebeenbean 384
Chapter 21. Subshells 386

Advanced Bash-Scripting Guide

Table of Contents

Chapter 22. Restricted Shells 391
Chapter 23. Process Substitution 393
Chapter 24. Functions 398
24.1. Complex Functions and Function COMPIEXITIESeeuverveerrierierienieniieniienieenieesieesieesieesieeneeeneeas 402

24,2, T.0CAL VATTADIES. .. vttt e e e e e e e et e e e e e st e e e e e e e s e sasasssssasssssasasasasanes 413

24.2.1. Local variables and TECUISION. .. .uuuueeeeeeieeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeesereeerereeeseeseeeseseeeseseeseses 414

24.3. Recursion Without 1ocal VariableS.coouvviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e aaeaaaeaeaees 417
Chapter 25. Aliases 420
Chapter 26. List Constructs. 423
Chapter 27. Arrays 427
Chapter 28. Indirect References 456
Chapter 29. /dev and /proc 460
20 . L LBV e e e e e e e e e ————eeesaaa——————eeeeeaa——————eeesaaaar———aaeeeaaar——aaeesaanann 460

A I L 0] x0T RO ORORORPRPPPPPRPPPPPRRt 463
Chapter 30. Network Programming 469
hapter 31. Of Zeros and Nulls 472
Chapter 32. Debugging 476
Chapter 33. Options 487
Chapter 34. Gotchas 490
Chapter 35. Scripting With Style 499
35.1. Unofficial Shell Scripting StYIEShEet.......ccueviiiiiiiiiieieiete ettt 499
Chapter 36. Miscellany. 502
36.1. Interactive and non-interactive shells and SCIIPES........uereerierierienienierienteree st 502

36.2. SHEIL WIADDEIS . ..veuteeuteettertteriteetteette et e sttesttesutesttesutesutesbtesbeesbeesbeeebeeabee bt enbeenbeesbeesbeenbeenbeabeensean 503

36.3. Tests and Comparisons: AIEIMALIVES.ceterierierienieriertiesttesieeseesteesteesbeesbeesteesbeesbeenbeenbeeeeas 509

36.4. Recursion: a script Calling TESEIE.......couiiiiiiiiiiiieee ettt 509

RO TR T ©10) (o] u 41 1 oAl T3 4 10 1 USSR 512

36.6. ODUIMIZATIONS -+ vveeuteuteettertiestteetteetteette st testtesttesttesutesutesbeesbtesbeesbeeebeeabeenbeenbeenbeesbeesbeanbeenbeanbeensean 525

36.7. ASSOTEEA TIPS, ..ttt ettt ettt e b e b e e s bt e s bt e s bt e sbe e s bt e bt e bt e bt e sbeesbeenbeenbeebeenbean 528

36.7.1. Ideas for more POWETTUL SCIIDESvevvtertterierieetierttertte st e st et et et ee et e e sbeesbee b enbeenbeenbeas 528

B0.7.2. WIAGEES ...ttt h et b e s bt e sb e e sbe e s bt e s bt e s bt e bt e beesbe e bt e nbe e be e beebean 539

36.8. SECUTLILY ISSUES. .. .eeuiiuiiiiieitie ittt ettt sttt et e st e bt e s bt e s bt e sbeesheesbe e bt e bt enbeesbeesbee bt ebeabeeneean 541

36.8.1. Infected Shell SCIIDES. . ..ueiterieeieiiesite ettt sttt et e st e b e b e e bt e sbeesbe e beebeenbean 541

36.8.2. Hiding Shell SCript SOUICE ... ccuveiutiiieriieiiieeiie ettt ettt ettt et e sbe e sbeeneeas 541

Advanced Bash-Scripting Guide

Table of Contents

Chapter 36. Miscellany

36.8.3. Writing Secure Shell SCIDPLS.......eevveerieeriierieieeieeeee e
36.9. Portability ISSUESeeoueeeeeteeiieieete ettt ettt ettt ettt et et eeean
36.9. 1. A TS SUILE ...coeeiieeieieieee oo aeaaeeeeeseeeeeeseeeees

36.10. Shell Scripting Under WindOWS.........ccceerueerieenieeniennieeieeieeieeieeeeieeeee

Chapter 37. Bash, versions 2, 3, and 4

544

37.1. BaSh, VEISION 2..eveeiieeiieeieieeeeeeeeeee e eeeeteee e e e et e e e e e eeaaaeeeeesseennaaaeeeeeseans
37.2. Bash, VEISION B...oooiieiiiiiiieeeeeeiieeeee et e e e e e e e e e eaaae e e e e s eeennaaeeeeeeeeans
37.2.1. Bash, VEISION 3.1 ..cccoiiiiiiiiieeeiieeieieee ettt e et eeeeeeans
37.2.2. Bash, VEISION 3.2.....cccooiiiiiiiieiiieieeeeee ettt e e e et e e e s eeeaaaeeeeeeeeans
37.3. Bash, VEISION Q...occooeeeieeeiiee oottt e et e et e e e s eeennaaeeeeeeeeans
37.3.1. Bash, VEISION 4. l..cccciiiiiiiiieeeeeeeieeeeee et e e e
37.3.2. Bash, VEISION 4.2ccooeeieiieeeeeeeeieeeeee e e e e e s eeaaaeeeeeeeen

544
548
551
552
552
559
560

564

Chapter 38. Endnotes

381, AULNOI'S INOLE...vvvveeeeeecieeeeeeee ettt e e e et e e e e seaaa e e e e e s s eennaaeeeeeeeeas
38.2. ADOUL the AULNOT......cceveieieie e e e e e e e e e
38.3. Where t0 GO FOr Help....o.eooveeiieiieiieeeieeeeeeeeeee e
38.4. Tools Used to Produce This BOOK........cccuvvvviiiiiiiiieiieeeeeeiiieeeee e

384 1. HArAWATE........cooeeeeeeeeeeeee ettt e e e e e e e e eaeaeeas

38.4.2. Software and PriNtWAaTE...........ccovuvvvieeeeiiiieeeeeeeeeeieeeeeeeeeeeieveeeeeeeeennns
L T T O3 C=1a 11 1T
38.0. DISCIAIMIETuuvvvvieeeeeeeiiieieee e eeeeee e e e e e et e e e e e eeae e e e e s senaaaeeeeesssensaaaeeeeeeeas

564
564
565
565
565
565
566
567

569

Bibliography.

Appendix A. Contributed Scripts

577

Appendix B. Reference Cards

787

Appendix C. A Sed and Awk Micro-Primer

Appendix D. Parsing and Managing Pathnames

792
792
795
798

802

Appendix E. Exit Codes With Special Meanings.

Appendix F. A Detailed Introduction to and Redirection

803

Appendix G. Command-Line Options.

805

G.1. Standard Command-L1in€ OPONS.cceerueertierienieniieneeneenieenieeieesieesieeneeens
G.2. Bash Command-L1ine OPLONS. .. .ccerveertierienienieniieneeseesieesieesteenieeneeesieeneeens

Appendix H. Important Files.

805
806

808

Advanced Bash-Scripting Guide

Table of Contents

Appendix 1. Important System Directories

809

Appendix J. An Introduction to Programmable Completion

811

Appendix K. Localization

814

Appendix L. History Commands

818

Appendix M. Sample .bashrc and .bash profile Files.

Appendix N. Converting D Batch Files to Shell Scripts

820

837

Appendix O. Exercises

841

O.1. ADALYZING SCIIPLS -+t euveeutteteeteete ettt ettt ettt et e e bttt et e ebeebe e beenbeenbeeeeeneeenee
O.2. WIING SCIIPES e uveeuteeuteenteeieeteete et ete et eteebeebeebeebeesteesteebeebeenbeeneeeeeenseenne

Appendix P. Revision History.

841
843

853

Appendix Q. Download and Mirror Sites

856

857

Appendix R. To Do List

Appendix S. Copyright.

858

Appendix T. ASCII Table

Chapter 1. Shell Programming!

No programming language is perfect. There is
not even a single best language; there are only
languages well suited or perhaps poorly suited
for particular purposes.

--Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /et c/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

The craft of scripting is not hard to master, since scripts can be built in bite-sized sections and there is only a
fairly small set of shell-specific operators and options [1] to learn. The syntax is simple -- even austere --
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
governing their use. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

In the early days of personal computing, the BASIC language enabled
anyone reasonably computer proficient to write programs on an early
generation of microcomputers. Decades later, the Bash scripting
language enables anyone with a rudimentary knowledge of Linux or
UNIX to do the same on modern machines.

We now have miniaturized single-board computers with amazing
capabilities, such as the Raspberry Pi.

Bash scripting provides a way to explore the capabilities of these
fascinating devices.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited subset
of the functionality to work in a script is often a useful first stage in project development. In this way, the
structure of the application can be tested and tinkered with, and the major pitfalls found before proceeding to
the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high-powered
all-in-one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you to
alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures." By these criteria, shell scripting falls somewhat short of being "useful." Or, perhaps not. . . .

When not to use shell scripts

Chapter 1. Shell Programming! 1

http://www.raspberrypi.org/

Advanced Bash-Scripting Guide

e Resource-intensive tasks, especially where speed is a factor (sorting, hashing, recursion [2] ...)

¢ Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

¢ Cross-platform portability required (use C or Java instead)

e Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

e Mission-critical applications upon which you are betting the future of the company

e Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

¢ Project consists of subcomponents with interlocking dependencies

¢ Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion.)

¢ Need native support for multi-dimensional arrays

e Need data structures, such as linked lists or trees

¢ Need to generate / manipulate graphics or GUIs

® Need direct access to system hardware or external peripherals

¢ Need port or socket I/O

® Need to use libraries or interface with legacy code

¢ Proprietary, closed-source applications (Shell scripts put the source code right out in the open for all
the world to see.)

If any of the above applies, consider a more powerful scripting language -- perhaps Perl, Tcl, Python, Ruby
-- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

We will be using Bash, an acronym [3] for "Bourne-Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [4] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work -- they've been tested, insofar as possible -- and some of them are even useful
in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.sh or scriptname.bash), [5] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut-and-paste from the HTML or pdf rendered versions. Be aware that some of the scripts presented here
introduce features before they are explained, and this may require the reader to temporarily skip ahead for
enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.
His countenance was bold and bashed not.

--Edmund Spenser

Chapter 1. Shell Programming! 2

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://bash.deta.in/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.deta.in/abs-guide.pdf
mailto:thegrendel.abs@gmail.com

Chapter 2. Starting Off With a Sha-Bang

Shell programming is a 1950s juke box . . .

--Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up log files in /var/log

Cleanup
Run as root, of course.

cd /var/log

cat /dev/null > messages

cat /dev/null > wtmp

echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one by one
from the command-line on the console or in a terminal window. The advantages of placing the commands in a
script go far beyond not having to retype them time and again. The script becomes a program -- a tool -- and it
can easily be modified or customized for a particular application.

Example 2-2. cleanup: An improved clean-up script

#!/bin/bash
Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log

Variables are better than hard-coded values.

cd SLOG_DIR

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up."

exit # The right and proper method of "exiting" from a script.

A bare "exit" (no parameter) returns the exit status
#+ of the preceding command.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

#!/bin/bash
Cleanup, version 3

Chapter 2. Starting Off With a Sha-Bang 3

Advanced Bash-Scripting Guide

Warning:

This script uses quite a number of features that will be explained

#+ later on.
By the time you've finished the first half of the book,
#+ there should be nothing mysterious about it.

LOG_DIR=/var/log

ROOT_UID=0 # Only users with SUID 0 have root privileges.
LINES=50 # Default number of lines saved.
E_XCD=86 # Can't change directory?

E_NOTROOT=87 # Non-root exit error.

Run as root, of course.

if ["SUID" —-ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit SE_NOTROOT

fi

if [-n "S$1"]
Test whether command-line argument is present (non-empty) .
then

lines=$1
else

1lines=SLINES # Default, if not specified on command-line.
fi

Stephane Chazelas suggests the following,
#+ as a better way of checking command-line arguments,

#+ but this is still a bit advanced for this stage of the tutorial.

#

E_WRONGARGS=85 # Non-numerical argument (bad argument format) .
#

case "$1" in

") lines=50;;

[!10-9]) echo "Usage: “basename $0° lines-to-cleanup";
exit S$E_WRONGARGS; ;

&) lines=$1;;

esac

#

#* Skip ahead to "Loops" chapter to decipher all this.

cd $LOG_DIR

if ["pwd® != "SLOG_DIR"] # or if ["$PWD" != "SLOG_DIR"
Not in /var/log?
then
echo "Can't change to $LOG_DIR."
exit S$E_XCD

]

fi # Doublecheck if in right directory before messing with log file.

Far more efficient is:

#
cd /var/log || {
echo "Cannot change to necessary directory." >&2

exit S$E_XCD;

Chapter 2. Starting Off With a Sha-Bang

Advanced Bash-Scripting Guide

#* 0}

tail -n $lines messages > mesg.temp # Save last section of message log file.
mv mesg.temp messages # Rename it as system log file.

cat /dev/null > messages
#* No longer needed, as the above method is safer.

cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
echo "Log files cleaned up."

Note that there are other log files in /var/log not affected

#+ by this script.

exit O
A zero return value from the script upon exit indicates success
#+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

k sk sk

The sha-bang (#!) [6] at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two-byte [7] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. [8]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed —-f
#!/bin/awk —-f

Each of the above script header lines calls a different command interpreter, be it /bin/ sh, the default shell
(bash in a Linux system) or otherwise. [9] Using #! /bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX [10] sh standard.

Note that the path given at the "sha-bang" must be correct, otherwise an error message -- usually "Command
not found." -- will be the only result of running the script. [11]

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, 1ines=50,
uses a shell-specific construct. [12] Note again that #! /bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

i) This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you will build quite an

Chapter 2. Starting Off With a Sha-Bang 5

Advanced Bash-Scripting Guide

extensive library of nifty routines. As an example, the following script prolog tests whether the script has
been invoked with the correct number of parameters.

E_WRONG_ARGS=85

script_parameters="-a -h -m -z"

-a = all, -h = help, etc.
if [$S# —ne SNumber_ of_ expected_args]

then

echo "Usage: "basename $0° S$script_parameters"

"basename $0° 1is the script's filename.

exit SE_WRONG_ARGS
fi
Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example. Later, it might occur to you to generalize the script to do other, similar tasks. Replacing the
literal ("hard-wired") constants by variables is a step in that direction, as is replacing repetitive code
blocks by functions.

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [13] or alternatively bash
scriptname. (Not recommended is using sh <scriptname, since this effectively disables reading from
stdin within the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:

chmod 555 scriptname (gives everyone read/execute permission) [14]
or

chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by . /scriptname. [15] If it begins with a
"sha-bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,
of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command-line.

2.2. Preliminary Exercises

1. System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves this information to a logfile.

Chapter 2. Starting Off With a Sha-Bang 6

Part 2. Basics

Table of Contents

3. Special Characters

4. Introduction to Variables and Parameters
4.1. Variable Substitution

4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types
5. Quoting
5.1. Quoting Variables

5.2. Escaping
Exit and Exit Status
Tests

6.
7.

7.1. Test Constructs

7.2. File test operators

7.3. Other Comparison Operators

7.4. Nested 1 £/t hen Condition Tests

7.5. Testing Your Knowledge of Tests
8. Operations and Related Topics

8.1. Operators
8.2. Numerical Constants

8.3. The Double-Parentheses Construct
8.4. Operator Precedence

Part 2. Basics

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we refer

to it as a special character. Along with commands and keywords, special characters are building blocks of
Bash scripts.

Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
~ Note whitespace before

Comments may also follow whitespace at the beginning of a line.

A tab precedes this comment.

Comments may even be embedded within a pipe.

initial=(‘cat "Sstartfile" | sed —-e '"/#/d' | tr -d '\n' |\
Delete lines containing '#' comment character.

sed -e 's/\./\. /g' -e 's/_/_ /g')
Excerpted from life.sh script

<1> A command may not follow a comment on the same line. There is no method of
terminating the comment, in order for "live code" to begin on the same line. Use a new
line for the next command.

=) Of course, a quoted or an gscaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter-substitution constructs and in numerical
constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo S$S{PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.
The standard quoting and escape characters (" '\) escape the #.
Certain pattern matching operations also use the #.

Command separator [semicolon]. Permits putting two or more commands on the same line.

echo hello; echo there

Chapter 3. Special Characters 8

Advanced Bash-Scripting Guide

if [-x "Sfilename"]; then # Note the space after the semicolon.
#+ AN

echo "File S$filename exists."; cp S$filename S$filename.bak
else # an

echo "File S$filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.
Terminator in a case option [double semicolon].

case "Svariable" in

abc) echo "\$variable = abc" ;;
xyz) echo "\$variable = xyz" ;;
esac

&, &
Terminators in a case option (version 4+ of Bash).

"dot" command [period]. Equivalent to source (see Example 15-22). This is a bash builtin.

""dot"', as a component of a filename. When working with filenames, a leading dot is the prefix of a
"hidden" file, a file that an Is will not normally show.

bash$ touch .hidden-file
bash$ 1s -1

total 10

—rW—r——r—— 1 bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ 1s -al

total 14

ArwXrwxr—x 2 bozo Dbozo 1024 Aug 29 20:54 ./

drwx—————— 52 bozo bozo 3072 Aug 29 20:51 ../

—rW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.addressbook
—rW—YrwW-—Ir—— 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home/bozo/projects

bash$ ed ..
bash$ pwd
/home /bozo/

The dot often appears as the destination (directory) of a file movement command, in this context
meaning current directory.

Chapter 3. Special Characters 9

Advanced Bash-Scripting Guide

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.

"dot'" character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See Chapter 5.

full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than "STRING". See Chapter 5.

comma operator. The comma operator [16] links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

let "t2 = ((a =9, 15/ 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc

" Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do

if [-x "S$file"]

then

echo $file

fi

done

/bin/ipcalc

/usr/bin/kcalc

/usr/bin/oidcalc
/usr/bin/oocalc

Thank you, Rory Winston, for pointing this out.
Lowercase conversion in parameter substitution (added in yersion 4 of Bash).
escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'. The \ may be used to
quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

Filename path separator [forward slash]. Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.

command substitution. The “‘command” construct makes available the output of command for
assignment to a variable. This is also known as backquotes or backticks.

Chapter 3. Special Characters 10

Advanced Bash-Scripting Guide

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-nothing operation). It
may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is true (0).

écho S? # 0
Endless loop:

while

do
operation-1
operation-2

operation—-n
done
Same as:
while true
do
..
done
Placeholder in if/then test:

if condition

then : # Do nothing and branch ahead
else # Or else

take-some—action
fi

Provide a placeholder where a binary operation is expected, see Example 8-2 and default parameters.

${username="whoami }

S{username='whoami’ } Gives an error without the leading :
unless "username" is a command or builtin...
${1?"Usage: $0 ARGUMENT"} # From "usage-message.sh example script.

Provide a placeholder where a command is expected in a here document. See Example 19-10.
Evaluate string of variables using parameter substitution (as in Example 10-7).

S{HOSTNAME?} ${USER?} ${MAIL?}
Prints error message
#+ 1f one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

> data.xxx # File "data.xxx" now empty.
Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

Chapter 3. Special Characters 11

Advanced Bash-Scripting Guide

In combination with the >> redirection operator, has no effect on a pre-existing target file (: >>
target_file). If the file did not previously exist, creates it.

<& This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may appear in a comment.
However, this is not the case with :.

This is a comment that generates an error, (if [$x -eqg 3]).

The ":" serves as a field separator, in /et c/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

A colon is acceptable as a function name.

: ()
{
echo "The name of this function is "S$FUNCNAME" "

Why use a colon as a function name?
It's a way of obfuscating your code.

}

The name of this function is
This is not portable behavior, and therefore not a recommended practice. In fact, more recent releases
of Bash do not permit this usage. An underscore _ works, though.

A colon can serve as a placeholder in an otherwise empty function.

not_empty ()
{

} # Contains a : (null command), and so is not empty.
reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of

the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of equal (=) to not-equal (!=). The ! operator is a Bash

keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix L). Note that within a script, the history mechanism is disabled.

wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By
itself, it matches every filename in a given directory.

bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh

Chapter 3. Special Characters 12

$* $@

$?

$$
0

Advanced Bash-Scripting Guide

The * also represents any number (or zero) characters in a regular expression.
arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.
** A double asterisk can represent the exponentiation operator or extended file-match globbing.

test operator. Within certain expressions, the ? indicates a test for a condition.

In a double-parentheses construct, the ? can serve as an element of a C-style frinary operator. [17
condition?result—-if-true:result-if-false

((var0 = varl<9829:21))

4 A A
if ["Svarl" -1t 98]
then

var0=9

else

var0=21

fi

In a parameter substitution expression, the ? tests whether a variable has been set.

wild card. The ? character serves as a single-character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

Yariable substitution (contents of a variable).

varl=5
var2=23skidoo

echo S$varl # 5
echo $var2 # 23skidoo

A $ prefixing a variable name indicates the value the variable holds.
end-of-line. In a regular expression, a "$" addresses the end of a line of text.

Parameter substitution.

Quoted string expansion. This construct expands single or multiple escaped octal or hex values into

ASCII [18] or Unicode characters.

positional parameters.

exit status variable. The $? variable holds the exit status of a command, a function, or of the script

itself.
process ID variable. The $$ variable holds the process ID [19] of the script in which it appears.

command group.

Chapter 3. Special Characters

13

Advanced Bash-Scripting Guide

(a=hello; echo $a)

!) A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest of the
script. The parent process, the script, cannot read variables created in the child
process, the subshell.

a=123
(a=321;)

echo "a = sa" # a =123
"a" within parentheses acts like a local variable.

array initialization.

Array=(elementl element2 element3)

{xxx,yyy,zzz,...}

{a..z}

{}

Brace expansion.

echo \"{These,words, are, quoted}\" # " prefix and suffix
"These" "words" "are" "quoted"

cat {filel,file2,file3} > combined_file
Concatenates the files filel, file2, and file3 into combined_file.

cp file22.{txt,backup}
Copies "file22.txt" to "file22.backup"

A command may act upon a comma-separated list of file specs within braces. [20] Filename
expansion (globbing) applies to the file specs between the braces.

<1 No spaces allowed within the braces unless the spaces are quoted or escaped.
echo {filel,file2}\ :{\ A," B",' C'}

filel : A filel : B filel : C file2 : A file2 : B file2
C

Extended Brace expansion.

echo {a..z} # abcdefghijklmnopgrstuvwzxyz
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

base64_charset=({A..Z} {a..z} {0..9} + / =)
Initializing an array, using extended brace expansion.
From vladz's "base64.sh" example script.

The {a..z} extended brace expansion construction is a feature introduced in version 3 of Bash.

Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the

Chapter 3. Special Characters 14

Advanced Bash-Scripting Guide

variables inside a code block remain visible to the remainder of the script.

bash$ { local a;
a=123; }
bash: local: can only be used in a
function
a=123
{ a=321; }
echo "a = S$a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and 1/0 redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{

read linel
read line2
} < $File

echo "First line in $File is:"
echo "$linel"

echo

echo "Second line in $File is:"
echo "$line2"

exit O
Now, how do you parse the separate fields of each line?

Hint: use awk, or
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
+ and whether it can be installed.
Saves output to a file.

H o o

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "$1"]
then

Chapter 3. Special Characters

Advanced Bash-Scripting Guide
echo "Usage: “basename $0° rpm-file"
exit SE_NOARGS
fi

{ # Begin code block.

echo
echo "Archive Description:"
rpm —gpi $1 # Query description.
echo
echo "Archive Listing:"
rpm —gpl $1 # Query listing.
echo
rpm —-i —-test $1 # Query whether rpm file can be installed.
if ["$?" -eqg $SUCCESS]
then
echo "$1 can be installed."
else
echo "$1 cannot be installed."
fi
echo # End code block.
} > "Sl.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1l.test"
See rpm man page for explanation of options.

exit O

=& Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [21]

It is possible to iterate a code block using a non-standard for-loop.

{}
placeholder for text. Used after xargs —i (replace strings option). The {} double curly brackets are a
placeholder for output text.
ls . | xargs -i -t cp ./{} $1
AN AN
From "ex42.sh" (copydir.sh) example.
{h\
pathname. Mostly used in find constructs. This is not a shell builtin.
Definition: A pathname is a filename that includes the complete path. As an example,
/home/bozo/Notes/Thursday/schedule. txt. This is sometimes referred to as the
absolute path.
& The ";" ends the —exec option of a find command sequence. It needs to be escaped to
protect it from interpretation by the shell.
[]

test.

Chapter 3. Special Characters 16

(L1

[]

[]

$[...

()

Advanced Bash-Scripting Guide

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

test.

Test expression between [[]]. More flexible than the single-bracket [] test, this is a shell keyword.
See the discussion on the [[...]] construct.

array element.

In the context of an array, brackets set off the numbering of each element of that array.

Array[l]=slot_1
echo S${Array[1l]}

range of characters.
As part of a regular expression, brackets delineate a range of characters to match.
integer expansion.

Evaluate integer expression between $[.

echo $[$Sa+s$bl # 10

echo $[$a*S$Sb] # 21

Note that this usage is deprecated, and has been replaced by the ((...)) construct.
integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.

>&>>&>><<>

redirection.

scriptname >filename redirects the output of scriptname to file £ilename. Overwrite
filename if it already exists.

command &>filename redirects both the st dout and the stderr of command to £ilename.

&) This is useful for suppressing output when testing for a condition. For example, let us
test whether a certain command exists.

bash$ type bogus_command &>/dev/null

Chapter 3. Special Characters

17

Advanced Bash-Scripting Guide

bash$ echo $?
1

Or in a script:

command_test () { type "S$1" &>/dev/null; }
A
cmd=rmdir # Legitimate command.
command_test $cmd; echo $? # 0
cmd=bogus_command # Illegitimate command
command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If
filename does not already exist, it is created.

[i] <>filename opens file £ilename for reading and writing, and assigns file descriptor i to it. If
filename does not exist, it is created.

process substitution.

(command) >
< (command)
In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also
Example 16-9.

<<
redirection used in a here document.

<<

redirection used in a here string.

ASCII comparison.

vegl=carrots
veg2=tomatoes

if [["$Svegl" < "Sveg2" 1]

then
echo "Although $vegl precede $veg2 in the dictionary,"
echo -n "this does not necessarily imply anything "
echo "about my culinary preferences."

else
echo "What kind of dictionary are you using, anyhow?"

fi

\<, >

word boundary in a regular expression.

Chapter 3. Special Characters 18

>|

Advanced Bash-Scripting Guide

bash$ grep '\<the\>' textfile

pipe. Passes the output (stdout) of a previous command to the input (stdin) of the next one, or to
the shell. This is a method of chaining commands together.

echo 1ls -1 | sh
Passes the output of "echo 1ls -1" to the shell,
#+ with the same result as a simple "l1ls -1".

cat *.lst | sort | unig
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the st dout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
filter, a command that transforms its input for processing. [22

cat $filenamel $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ. Part 3.
The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit O

Now, let us pipe the output of Is -1 to this script.

bash$ 1s -1 | ./uppercase.sh

—RW-RW-R—— 1 BOZO BOZO 109 APR 7 19:49 1.TXT
—RW-RW-R—— 1 BOZO BOZO 109 APR 14 16:48 2.TXT
—RW-R——R—— 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

&) The stdout of each process in a pipe must be read as the st din of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

cat filel file2 | 1ls -1 | sort
The output from "cat filel file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"
echo "new_value" | read variable
echo "variable = Svariable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal.

force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

Chapter 3. Special Characters 19

http://www.faqs.org/faqs/unix-faq/faq/part3/

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

OR logical operator. In a test construct, the Il operator causes a return of O (success) if either of the
linked test conditions is true.

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 345 6 7 8 9 10 # First loop.
do
echo —n "$i "
done & # Run this loop in background.
Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.

do
echo —n "$i "
done
echo # This 'echo' sometimes will not display.
#

The expected output from the script:
12345678910
11 12 13 14 15 16 17 18 19 20

H =

Sometimes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo' doesn't execute. Why?)

R

S

Occasionally also:
12345678910 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Why?)

S

Very rarely something like:
11 12 13 1 2 3 456 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

S

exit O
Nasimuddin Ansari suggests adding sleep 1
#+ after the echo —n "$i" in lines 6 and 14,

#+ for some real fun.

20

Advanced Bash-Scripting Guide

<1 A command run in the background within a script may cause the script to hang,
waiting for a keystroke. Fortunately, there is a remedy for this.
&&

AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both
the linked test conditions are true.

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix for a default
parameter in parameter substitution.

COMMAND -[Optionl] [Option2][...]
ls -al
sort —-dfu $filename

if [$filel -ot $file2]
then # ~

echo "File S$filel is older than S$file2."
fi

if [vl$all -eq "$b"]

then # ~
echo "$Sa is equal to Sb."
fi
if ["$c" -eq 24 -a "$d" -eq 47]
then # A A
echo "S$Sc equals 24 and $d equals 47."
fi

param2=${paraml : ~-SDEFAULTVAL}
A

The double-dash —— prefixes long (verbatim) options to commands.
sort —--ignore-leading-blanks
Used with a Bash builtin, it means the end of options to that particular command.

i) This provides a handy means of removing files whose names begin with a dash.

bash$ 1s -1
—-rw-r——r—— 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- —-badname

bash$ 1s -1
total 0

The double-dash is also used in conjunction with set.

set —- $variable (asin Example 15-18)

Chapter 3. Special Characters 21

Advanced Bash-Scripting Guide

redirection from/to stdin or stdout [dash].

bash$ cat -
abc
abc

Ctl-D
As expected, cat - echoes stdin, in this case keyboarded user input, to stdout. But, does I/O
redirection using - have real-world applications?

(cd /source/directory && tar cf — .) | (cd /dest/directory && tar xpvf -)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory
Source directory, where the files to be moved are.

2) &&
"And-list": if the 'cd' operation successful,
then execute the next command.
3) tar cf -
The 'c' option 'tar' archiving command creates a new archive,
the '"f' (file) option, followed by '-' designates the target file
as stdout, and do it in current directory tree ('.').
4) |
Piped to
5) (...)
a subshell

6) cd /dest/directory
Change to the destination directory.
7) &&
"And-1list", as above
8) tar xpvf -
Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),
reading data from stdin ('f' followed by '-'").

Note that 'x' is a command, and 'p', 'v', 'f' are options.

S S S e e o o o e e o o o e e o o o 3 e o o e 3 o

Whew!

More elegant than, but equivalent to:
cd source/directory
tar ¢f - . | (cd ../dest/directory; tar xpvf -)

Also having same effect:

cp —a /source/directory/* /dest/directory
Or:

cp —a /source/directory/* /source/directory/.[".]* /dest/directory
If there are hidden files in /source/directory.

SHE S S e e o o o

bunzip2 -c linux-2.6.1l6.tar.bz2 | tar xvf -

—-uncompress tar file—- | ——then pass it to "tar"--

If "tar" has not been patched to handle "bunzip2",

#+ this needs to be done in two discrete steps, using a pipe.

The purpose of the exercise is to unarchive "bzipped" kernel source.

Chapter 3. Special Characters

Advanced Bash-Scripting Guide

Note that in this context the "-" is not itself a Bash operator, but rather an option recognized by certain
UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, — redirects output to stdout (sometimes seen with tar cf), or
accepts input from stdin, rather than from a file. This is a method of using a file-oriented utility as
a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bashS$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:
grep Linux filel | diff file2 -

Finally, a real-world example using — with tar.

Example 3-4. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$ (date +%m-%d-%Y)

Embeds date in backup filename.

Thanks, Joshua Tschida, for the idea.
archive=${1:-$BACKUPFILE}

If no backup-archive filename specified on command-line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - “find . -mtime -1 -type f -print® > S$Sarchive.tar

gzip $archive.tar
echo "Directory $PWD backed up in archive file \"S$archive.tar.gz\"."

Chapter 3. Special Characters 23

Advanced Bash-Scripting Guide

Stephane Chazelas points out that the above code will fail
#+ 1f there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

find . —-mtime -1 -type f -print0 | xargs -0 tar rvf "Sarchive.tar"
using the GNU version of "find".

find . —-mtime -1 -type f —-exec tar rvf "Sarchive.tar" '{}' \;

portable to other UNIX flavors, but much slower.

exit O

nn "non

<1> Filenames beginning wit may cause problems when coupled with the
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example . /-FILENAME, $PWD/-FILENAME, or
SPATHNAME /-FILENAME.

If the value of a variable begins with a —, this may likewise create problems.

var="-n"
echo $var
Has the effect of "echo -n", and outputs nothing.

previous working directory. A cd - command changes to the previous working directory. This uses
the $OLDPWD environmental variable.

"non non

<1> Do not confuse the "-" used in this sense with the "-" redirection operator just
discussed. The interpretation of the "-" depends on the context in which it appears.

Minus. Minus sign in an arithmetic operation.

Equals. Assignment operator

a=28

echo $a # 28

In a different context, the "=" is a string comparison operator.

Plus. Addition arithmetic operator.

In a different context, the + is a Regular Expression operator.

Option. Option flag for a command or filter.

Certain commands and builtins use the + to enable certain options and the — to disable them. In
parameter substitution, the + prefixes an _alternate value that a variable expands to.

%
moduloe. Modulo (remainder of a division) arithmetic operation.

Chapter 3. Special Characters 24

Advanced Bash-Scripting Guide
leie Tz = 5 % 30
echo $z # 2
In a different context, the % is a pattern matching operator.

home directory [tilde]. This corresponds to the SHOME internal variable. ~bozo is bozo's home
directory, and Is ~bozo lists the contents of it. ~/ is the current user's home directory, and Is ~/ lists the
contents of it.

bash$ echo ~bozo
/home /bozo

bash$ echo ~
/home /bozo

bash$ echo ~/
/home /bozo/

bash$ echo ~:
/home /bozo:

bash$ echo ~nonexistent-user
~nonexistent-user

~+
current working directory. This corresponds to the $PWD internal variable.

previous working directory. This corresponds to the SOLDPWD internal variable.
regular expression match. This operator was introduced with version 3 of Bash.
beginning-of-line. In a regular expression, a """ addresses the beginning of a line of text.
Uppercase conversion in parameter substitution (added in yersion 4 of Bash).

Control Characters
change the behavior of the terminal or text display. A control character is a CONTROL + key
combination (pressed simultaneously). A control character may also be written in octal or
hexadecimal notation, following an escape.
Control characters are not normally useful inside a script.

dctl-a

Moves cursor to beginning of line of text (on the command-line).
0Cctl-B

Backspace (nondestructive).
¢
Cctl-C

Break. Terminate a foreground job.

0
Ctl-D

Chapter 3. Special Characters 25

Advanced Bash-Scripting Guide

Log out from a shell (similar to exit).

EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ct1-D erases the character under
the cursor. When there are no characters present, Ct1-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.

0 Ctl-E

Moves cursor to end of line of text (on the command-line).

0 Ctl-F

Moves cursor forward one character position (on the command-line).

0
Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell. In an xterm it

might beep.
0
Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over while backspacing.

#!/bin/bash

Embedding Ctl-H in a string.

a="~H"H"

echo "abcdef"

echo

echo -n "abcdef$a "
Space at end *

echo

echo -n "abcdefs$a"

No space at end

echo; echo
a=$'\010\010"

a=5$"\b\b'
a=$'\x08\x08"'

4 o o3 o

S

Two Ctl-H's —-- backspaces
ctl-V ctl-H, using vi/vim
abcdef

abcd f

A

Backspaces twice.

abcdef
~ Doesn't backspace (why?).
Results may not be quite as expected.

Constantin Hagemeier suggests trying:

But, this does not change the results.

B

Now, try this.
rubout=""H "H "H"H"H"

echo -n "12345678"
sleep 2
echo -n "Srubout"
sleep 2

¢ctl-I

Chapter 3. Special Characters

5 x Ctl-H.

26

Advanced Bash-Scripting Guide

Horizontal tab.

0
Ctl-J

Newline (line feed). In a script, may also be expressed in octal notation -- \012' or in
hexadecimal -- "\x0Oa'".
0Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ct 1-K erases from the character
under the cursor to end of line. Within a script, Ct 1-K may behave differently, as in Lee Lee
Maschmeyer's example, below.

0Cctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ct 1-L causes an advance to end of the paper sheet.

0
Ctl-M

Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s -p \

$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
Of course, '0d' is the hex equivalent of Control-M.

echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
'Oa' is the hex equivalent of Control-J, linefeed.
echo >&2

#H4#

read —-n 1 -s -p $'And Control-K\x0Obgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'

echo "Svar"

This works the same way as the above example. However:

echo "$var" | col

This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed —-

#+ to avoid a garbled screen.

As Lee Maschmeyer explains:

In the [first vertical tab example] . . . the vertical tab

#+ makes the printing go straight down without a carriage return.
This is true only on devices, such as the Linux console,

#+ that can't go "backward."

The real purpose of VT is to go straight UP, not down.

Chapter 3. Special Characters 27

Advanced Bash-Scripting Guide

It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.
exit O

¢ Ctl-N

Erases a line of text recalled from history buffer [23] (on the command-line).
¢ctl-o0

Issues a newline (on the command-line).
dctl-p

Recalls last command from history buffer (on the command-line).
¢ctl-0

Resume (XON).

This resumes stdin in a terminal.
0 Cctl-R

Backwards search for text in history buffer (on the command-line).
¢Cctl-s

Suspend (XOFF).

This freezes st din in a terminal. (Use Ctl-Q to restore input.)
dctl-T

Reverses the position of the character the cursor is on with the previous character (on the
command-line).

dctl-u

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ct1-U

erases the entire line of input, regardless of cursor position.
¢Cctl-v

When inputting text, Ct 1-V permits inserting control characters. For example, the following
two are equivalent:

echo -e '\x0a'
echo <Ctl-V><Ctl-J>

Ct1-V is primarily useful from within a text editor.
0ctl-w

When typing text on the console or in an xterm window, Ct 1-W erases from the character

under the cursor backwards to the first instance of whitespace. In some settings, Ct1-W
erases backwards to first non-alphanumeric character.
0ctl-x

In certain word processing programs, Cuts highlighted text and copies to clipboard.
0ctl-y

Chapter 3. Special Characters 28

Advanced Bash-Scripting Guide

Pastes back text previously erased (with Ct1-U or Ct1-W).
0ctl-z

Pauses a foreground job.
Substitute operation in certain word processing applications.
EOF (end-of-file) character in the MSDOS filesystem.
Whitespace
functions as a separator between commands and/or variables. Whitespace consists of either
spaces, tabs, blank lines, or any combination thereof. [24] In some contexts, such as variable

assignment, whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IES, the special variable separating fields of input to certain commands. It defaults to whitespace.

Separating each field from adjacent fields is either whitespace or some other designated character
(often determined by the $IFS). In some contexts, a field may be called a record.

Definition: A field is a discrete chunk of data expressed as a string of consecutive characters.

To preserve whitespace within a string or in a variable, use guoting.

UNIX filters can target and operate on whitespace using the POSIX character class [:space:].

Chapter 3. Special Characters

29

Chapter 4. Introduction to Variables and
Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing (retrieving) its value is
called variable substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variablel is the name
of a variable, then $variablel is a reference to its value, the data item it contains. [25]

bash$ wvariablel=23

bash$ echo variablel
variablel

bash$ echo $variablel

23
The only times a variable appears "naked" -- without the $ prefix -- is when declared or assigned,
when unset, when exported, in an arithmetic expression within double parentheses ((...)), or in the

special case of a variable representing a signal (see Example 32-5). Assignment may be with an = (as
in var1=27), in a read statement, and at the head of a loop (for var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ... ") does not interfere with variable substitution.
This is called partial quoting, sometimes referred to as "weak quoting.” Using single quotes (' ...")
causes the variable name to be used literally, and no substitution will take place. This is full quoting,
sometimes referred to as 'strong quoting.' See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified form of $ {variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 10.2, below).

Example 4-1. Variable assignment and substitution

#!/bin/bash
ex9.sh

Variables: assignment and substitution
a=375

hello=S$a
AN

Chapter 4. Introduction to Variables and Parameters 30

Advanced Bash-Scripting Guide

No space permitted on either side of = sign when initializing variables.
What happens if there is a space?

"VARIABLE =value"
A
#% Script tries to run "VARIABLE" command with one argument, "=value".

"VARIABLE= value"

A

#% Script tries to run "value" command with

#+ the environmental variable "VARIABLE" set to "".

echo hello # hello
Not a variable reference, just the string "hello"

echo S$hello # 375

~ This *is* a variable reference.

echo ${hello} # 375

Likewise a variable reference, as above.
Quoting .

echo "S$Shello" # 375

echo "${hello}" # 375
echo
hello="A B C D"

echo S$hello # A BCD
echo "$hello" # A B C D

As we see, echo Shello and echo "Shello" give different results.
#

Quoting a variable preserves whitespace.

#

echo

echo 'Shello' # Shello

A A

Variable referencing disabled (escaped) by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.

echo "\Shello (null value) = Shello" # Shello (null value) =

Note that setting a variable to a null value is not the same as
#+ unsetting it, although the end result is the same (see below) .

It is permissible to set multiple variables on the same line,
#+ 1f separated by white space.
Caution, this may reduce legibility, and may not be portable.

varl=21 var2=22 var3=$V3

echo
echo "varl=S$varl var2=$var?2 var3=Svar3"

Chapter 4. Introduction to Variables and Parameters 31

Advanced Bash-Scripting Guide

May cause problems with legacy versions of "sh"

echo; echo

numbers="one two three"

A A
other_ numbers="1 2 3"
AN A

If there is whitespace embedded within a variable,
#+ then quotes are necessary.
other numbers=1 2 3

Gives an error message.

echo "numbers = $numbers"

echo "other numbers = S$Sother numbers" # other_numbers = 1 2 3

Escaping the whitespace also works.

mixed_bag=2\ —---\ Whatever

" ~ Space after escape (\).

echo "Smixed_bag" # 2 ——— Whatever

echo; echo

echo "uninitialized_variable = Suninitialized_variable"

Uninitialized variable has null value (no value at all!).
uninitialized_variable= # Declaring, but not initializing it --

#+ same as setting it to a null value, as

echo "uninitialized_variable = Suninitialized_variable"
It still has a null value.

uninitialized_variable=23 # Set it.
unset uninitialized_variable # Unset it.
echo "uninitialized_variable = Suninitialized_variable"

uninitialized_variable =
It still has a null value.
echo

exit O

above.

An uninitialized variable has a "null" value -- no assigned value at all (not zero!).

if [-z "Sunassigned"]
then

echo "\Sunassigned is NULL."
fi # Sunassigned is NULL.

Using a variable before assigning a value to it may cause problems. It is nevertheless

possible to perform arithmetic operations on an uninitialized variable.

echo "Suninitialized" # (blank line)
let "uninitialized += 5" # Add 5 to it.
echo "Suninitialized" # 5

Conclusion:
An uninitialized variable has no value,
#+ however it evaluates as 0 in an arithmetic operation.

See also Example 15-23.

Chapter 4. Introduction to Variables and Parameters

32

Advanced Bash-Scripting Guide

4.2. Variable Assignment

the assignment operator (no space before and after)
¢ 1 Do not confuse this with = and -eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

#!/bin/bash
Naked variables

echo

When is a variable "naked", i.e., lacking the '$' in front?
When it is being assigned, rather than referenced.

Assignment
a=879
echo "The value of \"a\" is $a."

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now $a."

echo

In a 'for' loop (really, a type of disguised assignment) :
echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
echo -n "S$a "
done

echo
echo

In a 'read' statement (also a type of assignment) :
echo —-n "Enter \"a\" "

read a

echo "The value of \"a\" is now $a."

echo

exit O

Example 4-3. Variable Assignment, plain and fancy

#!/bin/bash
a=23 # Simple case

echo $a
b=$a

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide
echo $b

Now, getting a little bit fancier (command substitution).

a="echo Hello!" # Assigns result of 'echo' command to 'a'
echo $a
Note that including an exclamation mark (!) within a

#+ command substitution construct will not work from the command-line,
#+ since this triggers the Bash "history mechanism."
Inside a script, however, the history functions are disabled by default.

a="1ls -1° # Assigns result of 'ls -1' command to 'a'

echo $Sa # Unquoted, however, it removes tabs and newlines.
echo

echo "S$Sa" # The quoted variable preserves whitespace.

S

(See the chapter on "Quoting.")

exit O

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is likewise a
form of command substitution.

From /etc/rc.d/rc.local
R=$ (cat /etc/redhat-release)
arch=$ (uname -m)

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type." Essentially, Bash
variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4-4. Integer or string?

#!/bin/bash
int-or-string.sh

a=2334 # Integer.
let "a += 1"
echo "a = $a " # a = 2335
echo # Integer, still.
b=${a/23/BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = S$b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = S$b" # b = BB35
let "b += 1" # BB35 + 1
echo "b = $b" # b =1
echo # Bash sets the "integer value" of a string to O.
c=BB34
echo "c = s$c" # ¢ = BB34

Chapter 4. Introduction to Variables and Parameters 34

Advanced Bash-Scripting Guide

d=${c/BB/23} # Substitute "23" for "BB".
This makes $d an integer.

echo "d = sd" # d = 2334

let "d += 1" # 2334 + 1

echo "d = sd" # d = 2335

echo

What about null variables?

@="" # ... Or e="" ... Or e=

echo "e = Se" # e =

let "e += 1" # Arithmetic operations allowed on a null variable?
echo "e = S$e" #e=1

echo # Null variable transformed into an integer.

What about undeclared variables?

echo "f = Sf" # £ =

let "f += 1" # Arithmetic operations allowed?

echo "f = S$f" # £ =1

echo # Undeclared variable transformed into an integer.
#

However

let "f /= Sundecl_var" # Divide by zero?

let: £ /= : syntax error: operand expected (error token is " ")

Syntax error! Variable S$undecl_var is not set to zero here!

#

But still

let "f /= Q"

let: £ /= 0: division by 0 (error token is "0")
Expected behavior.

Bash (usually) sets the "integer value" of null to zero
#+ when performing an arithmetic operation.

But, don't try this at home, folks!

It's undocumented and probably non-portable behavior.

Conclusion: Variables in Bash are untyped,
#+ with all attendant consequences.

exit $°?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it easier
to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise permit subtle
errors to creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable types in a script, Bash does permit declaring variables.

4.4. Special Variable Types

Local variables

Variables visible only within a code block or function (see also local variables in functions)
Environmental variables

Variables that affect the behavior of the shell and user interface

- In a more general context, each process has an "environment", that is, a group of
variables that the process may reference. In this sense, the shell behaves like any other

Chapter 4. Introduction to Variables and Parameters 35

Advanced Bash-Scripting Guide

process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variables. Updating or adding new environmental variables causes the
shell to update its environment, and all the shell's child processes (the commands it
executes) inherit this environment.

<1> The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

bash$ eval "'seq 10000 | sed -e 's/.*/export var&=ZZZZZZZZZZZZZZ/' "

bash$ du
bash: /usr/bin/du: Argument list too long

Note: this "error" has been fixed, as of kernel version 2.6.23.

(Thank you, Stéphane Chazelas for the clarification, and for providing the above
example.)
If a script sets environmental variables, they need to be "exported," that is, reported to the
environment local to the script. This is the function of the export command.

=) A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the
command-line cannot export variables back to the command-line environment.
Child processes cannot export variables back to the parent processes that spawned
them.

Definition: A child process is a subprocess launched by another process, its

parent.
Positional parameters
Arguments passed to the script from the command line [26] : $0, $1, $2, $3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the third, and so forth.
[27] After $9, the arguments must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

Example 4-5. Positional Parameters

#!/bin/bash

Call this script with at least 10 parameters, for example
./scriptname 1 2 3 4 5 6 7 8 9 10

MINPARAMS=10

echo

echo "The name of this script is \"S$O\"."

Adds ./ for current directory
echo "The name of this script is \" basename $0 \"."

Chapter 4. Introduction to Variables and Parameters 36

Advanced Bash-Scripting Guide

Strips out path name info (see 'basename')

echo

if [-n "$S1"] # Tested variable is quoted.
then

echo "Parameter #1 is $1" # Need quotes to escape #
fi

if [-n ll$2ll]

then

echo "Parameter #2 is $2"
fi

if [-n "$3"]

then

echo "Parameter #3 is $3"
fi

if [-n "S{10}"] # Parameters > $9 must be enclosed in {brackets}.
then

echo "Parameter #10 is ${10}"

fi

EhE Yom—mmmmmeeoeeeeeeeeeeeeeseeseeesees
echo "All the command-line parameters are: "s$*""

if [$# -1t "SMINPARAMS"]
then

echo

echo "This script needs at least SMINPARAMS command-line arguments!"
fi

echo

exit O
Bracket notation for positional parameters leads to a fairly simple way of referencing the last
argument passed to a script on the command-line. This also requires indirect referencing.

args=S# # Number of args passed.
lastarg=${'!args}
Note: This is an *indirect reference* to $args

Or: lastarg=S${!#} (Thanks, Chris Monson.)
This i1s an *indirect reference* to the $# variable.
Note that lastarg=${!S$#} doesn't work.

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. [28] There must also exist
symbolic links to all the alternate names of the script. See Example 16-2.

i) If a script expects a command-line parameter but is invoked without one, this may
cause a null variable assignment, generally an undesirable result. One way to prevent
this is to append an extra character to both sides of the assignment statement using the

Chapter 4. Introduction to Variables and Parameters 37

Advanced Bash-Scripting Guide

expected positional parameter.

variablel =$1_ # Rather than variablel=$1
This will prevent an error, even if positional parameter is absent.

critical_argumentOl=$variablel_

The extra character can be stripped off later, like so.
variablel=${variablel /_/}

Side effects only if $variablel_ begins with an underscore.

This uses one of the parameter substitution templates discussed later.
(Leaving out the replacement pattern results in a deletion.)

A more straightforward way of dealing with this is
#+ to simply test whether expected positional parameters have been passed.

if [-z $1]
then

exit SE_MISSING_POS_PARAM
fi

However, as Fabian Kreutz points out,

#+ the above method may have unexpected side-effects.
A better method is parameter substitution:

S{l:-SDefaultVal}

See the "Parameter Substition" section

#+ in the "Variables Revisited" chapter.

Example 4-6. wh, whois domain name lookup

#!/bin/bash
ex18.sh

Does a 'whois domain-name' lookup on any of 3 alternate servers:
ripe.net, cw.net, radb.net

Place this script —-- renamed 'wh' -- in /usr/local/bin

Requires symbolic links:

1ln -s /usr/local/bin/wh
1ln -s /usr/local/bin/wh
1ln -s /usr/local/bin/wh

e

E_NOARGS=75

/usr/local/bin/wh-ripe
/usr/local/bin/wh-apnic
/usr/local/bin/wh-tucows

if [-z "S$1"]

then
echo "Usage: "basename $0° [domain-name]"
exit S$E_NOARGS

fi

Check script

name and call proper server.

case “basename $0° in # Or: case S${O##*/} in
"wh") whois $1@whois.tucows.com; ;
"wh-ripe") whois $1@whois.ripe.net;;
"wh-apnic") whois $1@whois.apnic.net;;
"wh—cw") whois $1@whois.cw.net;;
)

*

Chapter 4. Introduction to Variables and Parameters

echo "Usage:

‘basename $0° [domain-name]";;

38

Advanced Bash-Scripting Guide
esac

exit $°7?

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.
$1 <--- 82, $2 <---$3, $3 <--- $4, etc.

The old $1 disappears, but SO (the script name) does not change. If you use a large number of
positional parameters to a script, shift lets you access those past 10, although {bracket} notation also
permits this.

Example 4-7. Using shift

#!/bin/bash
shft.sh: Using 'shift' to step through all the positional parameters.

Name this script something like shft.sh,
#+ and invoke it with some parameters.
#+ For example:

sh shft.sh a b ¢ def 83 barndoor
until [-z "$1"] # Until all parameters used up
do

echo -n "$1 "

shift
done
echo # Extra linefeed.

But, what happens to the "used-up" parameters?

echo "S$2"

Nothing echoes!

When $2 shifts into $1 (and there is no $3 to shift into $2)
#+ then $2 remains empty.

So, it is not a parameter *copy*, but a *movex*.

exit

See also the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional params.

The shift command can take a numerical parameter indicating how many positions to shift.

#!/bin/bash
shift-past.sh

shift 3 # Shift 3 positions.
n=3; shift $n
Has the same effect.

echo "S$1"

exit O

Chapter 4. Introduction to Variables and Parameters 39

Advanced Bash-Scripting Guide

$ sh shift-past.sh 1 2 3 4 5

4

However, as Eleni Fragkiadaki, points out,

#+ attempting a 'shift' past the number of

#+ positional parameters ($#) returns an exit status of 1,
#+ and the positional parameters themselves do not change.
This means possibly getting stuck in an endless loop.

For example:

until [-z "$1"]

do

echo —n "$1 "

shift 20 # If less than 20 pos params,

done #+ then loop never ends!

#

When in doubt, add a sanity check.

shift 20 || break

AAAAANAAAN

&) The shift command works in a similar fashion on parameters passed to a function. See
Example 36-18.

Chapter 4. Introduction to Variables and Parameters

40

Chapter 5. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning. For example, the asterisk * represents a wild card character in

globbing and Regular Expressions).

bash$ 1s -1 [Vv]*

—IW—Yrw-r—-— 1 bozo Dbozo 324 Apr 2 15:05 VIEWDATA.BAT
—rW—YW-—Ir—— 1 bozo bozo 507 May 4 14:25 vartrace.sh
—rW—YrwW—Ir—— 1 bozo bozo 539 Apr 14 17:11 viewdata.sh

bash$ 1s =1 '[Vv]*'
ls: [Vv]*: No such file or directory

In everyday speech or writing, when we "quote" a phrase, we set it apart and give it special meaning. In a
Bash script, when we quote a string, we set it apart and protect its liferal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important use of
quoting is protecting a command-line parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Fflirst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that the unquoted grep [Ff]irst *.txt works under the Bash shell. [29]

Quoting can also suppress echo's "appetite" for newlines.

bash$ echo $(1ls -1)
total 8 —rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh —-rw-rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

bash$ echo "$(1s -1)"

total 8
—-rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh
—-rw—rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

5.1. Quoting Variables

When referencing a variable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape). [30]
Keeping $ as a special character within double quotes permits referencing a quoted variable
("Svariable™), that is, replacing the variable with its value (see Example 4-1, above).

Use double quotes to prevent word splitting. [31] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

List="one two three"

Chapter 5. Quoting 41

Advanced Bash-Scripting Guide

for a in $List # Splits the variable in parts at whitespace.
do
echo "S$Sa"
done
one
two
three

echo "——-"

for a in "S$List" # Preserves whitespace in a single variable.
do # A A
echo "S$Sa"
done
one two three

A more elaborate example:

variablel="a variable containing five words"
COMMAND This is $variablel # Executes COMMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COMMAND "This is $variablel" # Executes COMMAND with 1 argument:
"This is a variable containing five words"

variable2="" # Empty.
COMMAND $variable2 S$variable2 S$variable?2
Executes COMMAND with no arguments.
COMMAND "S$variable2" "S$Svariable2" "Svariable2"
Executes COMMAND with 3 empty arguments.
COMMAND "S$variable2 S$variable2 S$variable2"
Executes COMMAND with 1 argument (2 spaces).

Thanks, Stéphane Chazelas.

i) Enclosing the arguments to an echo statement in double quotes is necessary only when word splitting or
preservation of whitespace is an issue.

Example 5-1. Echoing Weird Variables

#!/bin/bash
weirdvars.sh: Echoing weird variables.

echo

var="" (]\\{ }\s\vlll

echo $var # U (IN{}S"

echo "Svar" # P (I\{}s" Doesn't make a difference.
echo

IFS="\"

echo $var # (1 {1S$" \ converted to space. Why?
echo "Svar" # ' (IN{}S"

Examples above supplied by Stephane Chazelas.

Chapter 5. Quoting 42

Advanced Bash-Scripting Guide

echo

var2="\\\\\""

echo S$Svar2 # "

echo "Svar2" # A\

echo

But ... var2="\\\\"" is illegal. Why?
var3="\\\\"

echo "$var3" # \\\\

Strong quoting works, though.

hhkhhkhkhk kA hkhhhhkrhhkrhhkhhhkhhkhkhhkrhhkrhhkhkhhkhkhkhkhhkrhkhkrhhkrkhhkrkkhkdxhkxk

As the first example above shows, nesting quotes is permitted.

echo "$(echo llll)ll # "
A A

At times this comes in useful.

varl="Two bits"
echo "\Svarl = "Svarl"" # Svarl = Two bits
A A

Or, as Chris Hiestand points out

if [["$(du "SMy_Filel")" -gt "$(du "SMy_File2")" 1]

A A AA A A AA

then

fi

hhkhkhkhkh kA hkhkhhhkrhhkrhhkhhhkhhkhkhhkrhhkrhhkhkhhkhhkhkhkhkrhkhkrhhkrkhhkrkkhkhkdxhkxk

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

&) Since even the escape character (\) gets a literal interpretation within single quotes, trying to enclose a
single quote within single quotes will not yield the expected result.

echo "Why can't I write 's between single quotes"

echo

The roundabout method.

echo 'Why can'\''t I write '"'"'s between single quotes'
N R [!

Three single-quoted strings, with escaped and quoted single quotes between.

This example courtesy of Stéphane Chazelas.

5.2. Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

Chapter 5. Quoting 43

Advanced Bash-Scripting Guide

<1 With certain commands and utilities, such as echo and sed, escaping a character may have the opposite

effect - it can toggle on a special meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n

\r

\t

\v

\b

\a

\Oxx

means newli